H(t)=-16t^2+672t

Simple and best practice solution for H(t)=-16t^2+672t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+672t equation:



(H)=-16H^2+672H
We move all terms to the left:
(H)-(-16H^2+672H)=0
We get rid of parentheses
16H^2-672H+H=0
We add all the numbers together, and all the variables
16H^2-671H=0
a = 16; b = -671; c = 0;
Δ = b2-4ac
Δ = -6712-4·16·0
Δ = 450241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{450241}=671$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-671)-671}{2*16}=\frac{0}{32} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-671)+671}{2*16}=\frac{1342}{32} =41+15/16 $

See similar equations:

| -x²+19x=88 | | 8x+9=25x= | | 3x-50=3 | | 112=72+5x | | 12=72+5x | | (Y+23)°(2x-17)°=180° | | 5x+3/4=x+5/6 | | z+3/4=5/2 | | 2x+x-23=76 | | x+3/2=5/3 | | x-2.4=2.7 | | 5m-3(m-2)=2m-(3-7) | | 8(a-2)=64 | | 2x+5/15=2 | | 4(5-3x)+2(-x+5)=7(3+3x)-2(x–4) | | 20-(3x6)+8=x | | 5x+0.25+0.75=100 | | 3x+6=12x+3 | | y=1.6•3-4 | | 6x+7-3x-9=0 | | n+5-2n+3=0 | | 5/m=7/m-4 | | 3(n+1)-2(n+2)=0 | | 2n+9=0 | | 2/3x+15=4x+15 | | 2/3(n-4)=6 | | 10y+80=31y-25 | | 10y+80=31y−25 | | (2x-3)(x+1)=2x2-3x+4 | | 2(x-30=-2+2x | | x/3–x/4=1 | | (2x-1)(2x+1)=4x2+2x-5 |

Equations solver categories